Measure Theory with Ergodic Horizons Lecture 22

Theorem (Fubini-Tenelli for 2003). Let
$$(X, Z, \mu)$$
 and (Y, S, ν) be e-finite measure spaces.
Let $f: X \vee Y \rightarrow \overline{\mathbb{R}} := [-\infty, \infty]$ be a $\overline{\mathcal{J} \otimes \mathcal{J}}$ -measurable function. Then:
(a) $f_X: Y \rightarrow \overline{\mathbb{R}}$ and $f^3: X \rightarrow \overline{\mathbb{R}}$ are \mathcal{J} and \mathcal{I} -measurable for all $x \in X$ and $y \in Y$
(b) Tonelli. If $f \gg D$, then:
(i) $v \mapsto \int f_X dv$ and $y \mapsto \int f^3 dy$ are \mathcal{I} and \mathcal{J} -measurable.
(ii) $\int_X \int f_X(y) dv(y) d\mu(x) = \int_X f d(p \cdot v) = \int_Y f^3(v) d\mu(v) dv(y)$.
(c) Fubini. If f is $p = v - ink grable$ then:
(i) $v \mapsto \int f_X dv$ and $y \mapsto \int f^3 dy$ are \mathcal{J} and \mathcal{J} -measurable and integrable.
(ii) $\int_X \int f_X(y) dv(y) d\mu(x) = \int_X f d(p \cdot v) = \int_Y f^3(v) d\mu(v) dv(y)$.
(iii) $\int_X \int f_X(y) dv(y) d\mu(x) = \int_X f d(p \cdot v) = \int_Y f^3(v) d\mu(v) dv(y)$.
(iv) $\int_X \int f_X(y) dv(y) d\mu(x) = \int_X f d(p \cdot v) = \int_Y f^3(v) d\mu(v) dv(y)$.
For (a), we have shown it by indicator functions, so the linearity of the integral implies.

For (c), write
$$f = f^{\dagger} - f^{-}$$
 and note that both f^{\dagger}, f^{-} are intergraphle, and
apply part (6) to f^{\dagger} and f^{-} . The only thing to note is that the tructions
 $x \mapsto \int f_{x}^{\pm} dv$ and $y \mapsto \int (f^{\pm})^{ij} d\mu$ are finite a.e. by (6) becase
 $\int [f_{x}^{\pm} dv d\mu = \int \int (f^{\pm})^{ij} d\mu dv(y) = \int f^{\pm} d\mu xv < \Omega$.

Latinite procluct spaces.

let I be an index set, possibly united and let (Xi, Di, pi) is be a seguence of measure spaces. We would like to define a measure p on the product $\chi := [] \chi_{:}$

firstly, we let B be the J-alyebra generated by [i+> Bi] = Bi x TT X; Muce iEI, Bie Di. We would like je to extend the finite products hixμ. κ. xμ. tor i,..., in ∈ Ì distinct, i.e. $\mu\left(\left[i_{i} \mapsto B_{i_{1}}, \dots, i_{n} \mapsto B_{i_{n}}\right]\right) = \mu\left(B_{i_{1}}\right) \cdot \mu\left(B_{i_{1}}\right) \cdot \dots \cdot \mu\left(B_{i_{n}}\right) \cdot \prod_{j \in \mathbb{Z}} \mu\left(X_{j}\right) \quad (k)$ where $[i, \mapsto B_{i_1}, \dots, i_n \mapsto B_{i_n}] = [i_i \mapsto B_{i_1}] \land \dots \land [i_n \mapsto B_{i_n}].$ To eisure let cylinders I can have finite nonzero measure, we need let all bet finitely many by are finite and in fact bounded above. Since we handled

To prove the existence of such a neasure
$$\mu$$
 retricting (*), let to be the algebra
generated by the cylinders and note, an usual, that each $A \in \mathcal{A}$ is a tricke
disjoint union of cylinders. Thus, in the usual taskion we may altime a timitely
additive measure μ on A satisfying (*). This is done by the task μA
and finite union of cylinders has all timitely may coordinates equal to X_i , so
the statements of well-defined here out fimite additivity reduces to that tor
finite products, which we already proved.
Thus to additivity, implies it is reported difficulty:
 $\mu(\prod A_n) \ge \sum_{n \in \mathbb{N}} \mu(A_n)$

Whenever LI An C A, br A. C.A. Thus, we only need to show let p is also atbly inbaddifiere.

Theorem (Kakutani 1943). In is ctbly subadditive, hence by Carathéodory's Nm, the is a unique probability accuse go on Bratistying (#), for arbitrary probability spaces (Ki, Bi, Mi).

Birkhott ergodic theorem.

When
$$(X, B, \mu)$$
 be a probability space and $T: X \rightarrow X$ be a (B, B) -measurable μ -
preserving transformation. Recall that a set $S \in X$ is called T-invariant if it
is a union of T-orbits; equivantly $T'(S) = S$. Finally, recall that T is said to
be ergodic if every T-invariant set in B is null or conull. In particular, ergonity
is a global property: we need to check something for every T-invariant set
in B. The following tamous theorem translates this global property into a
local tinitary proporty at a.e. point of X. The first version of it is due to
Birkhoff (1931), inspired by a weaker result of von Neumann. This theorem is
considered the birth of ergodic theory.

Classical pointwise ergodic theorem (Bickhoff 1931). Let
$$(X, B, \mu)$$
 be a probability space
and $T: X \rightarrow X$ be a (B, D) -measurable transformation that preserves μ , i.e.
 $\mu(T^{-1}(S)) = \mu(S)$ for all $S \in D$. Then T is ergodic iff for each $f \in L^{1}(X, \mu)$,
 (f) him $Auf(x) = \int f d\mu$ a.e. $x \in X$, $(f) = \int f d\mu$ a.e. $x \in X$, $(f) = \int f d\mu$ a.e. $x \in X$, $(f) = \int f d\mu$ a.e. $($

The <= hirection of this theorem is rather trivial:

The nontrivial direction
$$\implies$$
 says that for an ergodic T,
time averages Auf lowverge to spatial average Itdy.
In other words, the global statistic Itdy can be seen by examining
(tbly many parts $\{x, Tx, ..., T^{h}, T^{h}, ...\} =: the forward T-orbit of x.$

Next time we will give applications at this powerful theorem and give a short and modern proof of the nontrivial direction =>.